# Force Balance Servo Velocity Seismometer

# VSE-15A

\*custom made order

Tokyo Sokushin Co., Ltd.

Small size, Light weight (270gr)

Low frequency range (0.1  $\sim$  100Hz)

High resolution 10<sup>-6</sup>m/s<sup>2</sup> (10<sup>-4</sup>gal)

Servo Velocity Sensor



#### Useful for

- Survey of an underground structure.
- Earthquake monitoring
- After shock
- Micro-tremor
- Any of vibration Experiment

## Feature

Sensibility is higher than accelerometer



## Dimension



Plane



1 Y081031

#### **SPECIFICATION**

| Model                                  | VSE-15A (custom made order)                                      |
|----------------------------------------|------------------------------------------------------------------|
| Frequency range                        | 0.1~100Hz                                                        |
| Mode of operation                      | Horizontal, Vertical                                             |
| Max. measuring range                   | $\pm 1$ m/s ( $\pm 100$ kine)                                    |
| Output                                 | Velocity: 10cm/s/v, Acc:5mV/gal                                  |
| Output resistance                      | Less than 50 Ohm                                                 |
| Max. Output voltage                    | ±10V                                                             |
| Linearity                              | 0.03% of Full scale                                              |
| Resolution                             | 10 <sup>-4</sup> gal(Less 200μkine)                              |
| Dynamic range                          | Approximately 140dB                                              |
| Damping ration                         | h = about 10000%                                                 |
| Calibration coil                       | • Sensitivity : $350 \mu \text{ A m/s}^2 (3.5 \mu \text{A/gal})$ |
|                                        | • Coil resistance : $550\Omega$ (±20%)                           |
| Power requirements                     | ±15VDC                                                           |
| Current consumption                    | Approximately 15mA                                               |
| Cross axis sensitivity                 | $0.03\mathrm{G/G}$                                               |
| Sensitivity of temperature coefficient | 0.01%/°C                                                         |
| Temperature coefficient of zero-shift  | 0.05%/°C                                                         |
| Temperature range                      | -10°C ~70°C                                                      |
| Waterproof                             | IP65                                                             |
| Connect cable                          | Shielded 4 pair twist cable                                      |
| Allowable shock                        | 30G (less than 0.1Sec)                                           |
| Dimension                              | 61×61×72(H)                                                      |

#### **PRINCIPLE**

The sensing mechanism is similar to force balanced servo accelerometers except the time differential part is adapted in feed back circuit.



The related expression to particle velocity [m/s] and sensing output [E out] is shown as

E out = 
$$\frac{\mathbf{M} \cdot \mathbf{r}}{\mathbf{G} \cdot \mathbf{C} \cdot \mathbf{R}} \quad [V/m/s]$$

The output [Eout] means very stable and high accuracy because unstable and nonlinear elements for sensing are not included in this expression. The M, r, G, C, R are all stable solid parts, this is important for guarantee the accuracy.

2 Y081031